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Abstract

The dynamic instability of a pinned beam subjected to an alternating magnetic field and thermal load with the nonlinear

strain, and made of physically nonlinear thermoelastic material has been studied. Applying the Hamilton’s principle, the

equation of motion with damping factor, induced current and thermal load is derived. Using the Galerkin’s method, the

governing equation is reduced to a time-dependent Mathieu equation. The incremental harmonic balance (IHB) method is

applied to analyse the dynamic instability. The effects of non-dimensional parameters frequency ratio (O), load factor (j),
amplitude ( ak k), damping factor (k1) and temperature increment (DT) on the dynamic instability are obtained and

discussed. Results show that the characteristics of magnetoelastic instability for the beam having the large deformation are

distinctive from those of the beam having small deformation.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The effects of magnetic forces on the stress, motion and stability of the solid body have been discussed by
several studies. One of the complicated problems of magneto-solids mechanics is the treatment of the
interaction of electromagnetic fields with deformable structures. In order to analyse these phenomena, several
theoretical models and numerical programmes have been developed for studying the effect of magnetoelastic
interactions on the mechanical behavior of ferromagnetic structures such as beams, strips, plates and shells
[1–9]. The authors of these papers studied the magneto-solids mechanics arisen from a nonlinear interactions
between the linear/nonlinear magnetization of structures and an applied magnetic field.

It is well known that temperature increase may cause a quite significant change in the dynamic behavior of a
structure, as temperature fields introduce thermal stress due to thermal expansion or contraction, and cause
buckling of structures with two fixed ends [10]. On the other hand, when the large amplitude vibration is
considered, the dynamic instability of the system will be influenced by the nonlinear effect of large
deformation [11]. Therefore, the problem of geometrically nonlinear vibration with magnetic field and thermal
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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load is an interesting one. In fact, the magnetic force and the temperature variation have an interactive effect
on the magnetoelastic structures. Although, there is much research on modeling for the linear/nonlinear
magnetization of structures, the work of variation of thermal load and large deformation on the dynamic
instability of the structures has not been considered simultaneously. Recently, the mean of estimation of
thermal effect in the magnetic field with the linear thermoelastic relation has been developed by Wu [12]. The
effects of magnetic field and thermal load on the dynamic instability and transient vibrations were discussed.

The aim of this study is to obtain a theoretical model for a pinned beam subjected to an alternating
magnetic field and thermal load with the nonlinear strain, and made of physically nonlinear thermoelastic
material. The equation motion is derived by Hamilton’s principle in which the damping coefficient, induced
current and thermal load are also considered. Using the Galerkin’s method, the governing equation is reduced
to a time-dependent Mathieu equation. By using the incremental harmonic balance (IHB) method [13–15], the
nonlinear differential equation is transformed into a set of linearized incremental algebraic equations in terms
of Fourier coefficients, and solved by each incremental step. It is found that the results of instability carried
out by the IHB method agreed well with the results of Moon and Pao [1] for a small deformation. The
principal instability regions are shown in the parameter space of the excitation magnitude versus frequency
ratio, the frequency ratio versus dimensionless amplitude.

2. Equation of motion

2.1. Statement of problem

Consider a beam of length L, thickness h, and width d which is pinned at its ends, as shown in Fig. 1. An
alternating uniform transverse magnetic field B0 ¼ Bm cosðO� tÞ j

*
in the y-direction and a uniform

temperature increment DT are applied to the beam so that the magnetic force causes a displacement (u, v) of
the beam, where u and v are the longitudinal and transversal displacements, respectively. The mid-surface of
the undeformed beam is located at the x– z plane. The beam is initially straight having uniform thickness and
the material properties are assumed to be isotropic and homogeneous.

2.2. Hamilton’s principle

The mathematical model of the elastic system can be obtained through the application of the integral of the
Hamilton’s principle, which assumes the following aspect:

dIL ¼

Z t2

t1

dðK þW �UÞdtþ

Z t2

t1

dW cdt ¼ 0, (1)

where K is the kinetic energy of the system, U is the potential energy, W is the work of externally applied force,
and Wc is the work of nonconservative force.

In this study, the associated nonlinear strain takes the form

�xx ¼
qu

qx
þ

1

2

qv

qx

� �2

. (2)
L
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Fig. 1. The beam model.
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The elastic strain energy caused by the increment DT and nonlinear strain has been expressed by the
formulas [16]

U ¼

Z L

0

EI

2

q2v
qx2

� �2

dxþ

Z L

0

A

2E
½E�xx � gðTÞ�2dx, (3)

where E is the Young’s modulus, I is the moment of inertia of the cross-section, A is the cross-section area,
g(T) is the stress-temperature coefficient. In this study, the stress-temperature coefficient, g(T), is taken in the
form [17],

gðTÞ ¼ EaDT þ _a2DT2 (4)

where a is the coefficient of thermal expansion, and

_ ¼ _1ð1� 2nÞ � 2_2ðn2 � 1Þ þ _3n2. (5)

In Eq. (5) _1; _2; _3 are Murnaghan’s constants and n is Poisson’s ratio. The terms of K and W assume the
following aspect:

K ¼
1

2

Z L

0

m
qv

qt

� �2

dx,

W T ¼

Z L

0

c
qv

qx
dx,

W P ¼

Z L

0

Nðds� dxÞ ¼
1

2

Z L

0

Z x

0

pdx
� �

qv

qx

� �2

dx,

dW c ¼

Z L

0

cd

qv

qt

� �
dvdx and

W ¼W P þW T , ð6Þ

where m is the mass of the beam per unit length, N is the axial compressive force of the beam, p is the body
force of the beam per unit length, c is the body couple of the beam per unit length, and cd is the damping ratio.
Eq. (1) can be written as

dIL ¼

Z t2

t1

Z L

0

m
q2v
qt2

�
þ

qc

qx
þ

q
qx

Z x

0

p dx
� �
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� �
þ EI

q4v

qx4

� EA
q
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2
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qx
Þ
2
�

gðTÞ
E
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� �
dv dxdt
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t1
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q2v
qx2
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q
qx
ðdvÞ � EI

q3v
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Z x
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dt
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E
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EA
qu

qx
þ

1

2
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qx

� �2

�
gðTÞ

E

" #
du

�����
L

o

dt�

Z L

o

m
qv

qt
dv

� �����
t2

t1

dx ¼ 0. ð7Þ

For a pinned supported at both ends, the boundary conditions are

duð0Þ ¼ duðLÞ ¼ dvð0Þ ¼ dvðLÞ ¼ 0,

vð0Þ ¼ vðLÞ ¼ 0; and q2v=qx2 ¼ 0 at x ¼ 0 and L. ð8Þ
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The equilibrium equations can be obtained as

EA
q
qx

qu

qx
þ

1

2

qv

qx

� �2

�
gðtÞ
E

" #
¼ 0, (9)

m
q2v
qt2
þ cd

qv

qt
þ EI

q4v

qx4
þ

qc

qx
þ

q
qx

Z x

0

pdx
� �

qv

qx

� �
� EA

q
qx

qu

qx
þ

1

2

qv

qx

� �2

�
gðTÞ

E

" #
qv

qx

( )
¼ 0. (10)

Eq. (9) will be satisfied assuming

qu

qx
þ

1

2

qv

qx

� �2

�
gðTÞ

E
¼ constant ¼ d̄ðTÞ, (11)

where d̄ðTÞ is equal to the average strain of the system, therefore

d̄ðTÞ ¼
1

L

Z L

0

qu

qx
þ

1

2

qv

qx

� �2

�
gðTÞ

E

" #
dx ¼

1

2L

Z L

0

qv

qx

� �2

dx�
gðTÞ

E
. (12)

Substituting Eq. (12) into Eq. (10), the equation of motion is derived as

m
q2v
qt2
þ cd

qv

qt
þ EI

q4v
qx4
þ

qc

qx
þ

q
qx

Z x

0

pdx
� �

qv

qx

� �

þ AgðTÞ �
EA

2L

Z L

0

qv

qx

� �2

dx

" #
q2v
qx2
¼ 0. ð13Þ

2.3. Electromagnetic force F and torque c

As derived in Ref. [12], the electromagnetic force F and torque c acting on a volume V are

F ¼

Z
sð_r� B0Þ � B0dV , (14)

c ¼

Z
M� B0 dV , (15)

where s is the conductivity of the material, B0 is the magnetic field, _r is the velocity of body motion, and
M ¼ wðm0mrÞ

�1B is the volume density of magnetization in the body. m0 is the permeability of the vacuum, mr is
the relative permeability, and w ¼ 1� mr is the susceptibility, and B is the magnetic induction vector.

3. Analytical procedure

3.1. Displacement function

In this study, the fist mode is considered and the displacement function can be written as

vðx; tÞ ¼ wðtÞ sin lx; 0pxpL, (16)

where l ¼ p=L. An inextensible beam is assumed, and thenZ x

0

½1þ v0
2
ðx; tÞ�1=2dx ¼ s, (17)

where s is the length of the beam from 0 to x. Differentiating Eq. (17) with respect to t, becomesZ x

0

v0 _v0

ð1þ v02Þ1=2

" #
dxþ ½1þ v0

2
�1=2 _x ¼ 0 (18)
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and the velocity in x-direction is

_x ¼ dx=dt ¼ �
1

ð1þ v02Þ1=2

Z x

0

v0 _v0

ð1þ v02Þ1=2
dx. (19)

Substituting Eq. (19) into Eq. (16), the velocity in x-direction becomes

_x ¼ _rðx;wÞ ¼ �
_w

2lw½1þ ð2=l2w2Þ þ cos 2lx�1=2Z x

0

1þ cos x

½1þ ð2=l2w2Þ þ cos x�1=2
dx ð20Þ

and substituting it into Eq. (14) leads to the electromagnetic force as follows

F ¼ p~i ¼ �ðs=2ÞhdB2
mð1þ cos 2OtÞ_rðx;wÞ~i. (21)

The magnetization M can be derived using the same way as presented in Ref. [1], then the body couple can
be obtained

c ¼

Z
M� B0dV ¼ lFd cos lxð1þ cos 2OtÞw~k, (22)

where F ¼ w2B2
m sinhðlh=2Þ=ðm0mrlDÞ and D ¼ mr sinhðlh=2Þ þ coshðlh=2Þ.

Substituting Eqs. (20)–(22) into Eq. (13) leads to a linear operator P(w)

PðwÞ ¼ m €wþ cd _w� l2Fdð1þ cos 2OtÞwþ EIl4wþ
1

4
EAl4w3 � Al2gðTÞw

� ��
sin lx

�
s
2

	 

hdB2

mð1þ cos 2OtÞ _rðx;wÞlw cos lx� l2w sin lx

Z x

0

_rðx;wÞdx

� �
¼ 0. ð23Þ

3.2. Temperature effects

The conductivity s of a material is reciprocal of its resistivity, so s ¼ 1=W, where W is the resistivity of the
material. In addition, the temperature and resistivity of material are dependent, since they are related by the
relation

W ¼ W0 þ W0arDT , (24)

where W0 is the resistivity at room temperature and ar is temperature coefficient of resistivity. In this study, the
thermal expansion is cancelled out by equal and opposite contraction caused by the restraining force, due to
the total strain is zero at its ends. Once the nonlinear stress-temperature coefficient g(t) has been known, then
the magnitude of the restraining force Pt can be obtained

Pt ¼ �EAaDT � _Aa2DT2. (25)
3.3. Galerkin’s method

Taking sinlx as the base function, Galerkin’s equation leads toZ L

0

PðwÞ sin lxdx ¼ 0. (26)

By, simplifying Eq. (26), a time-dependent differential equation is derived as follows:

w;tt þ 2½kþ zð1þ cos 2OtÞw2�w;t þ ðo2
L � x cos 2OtÞwþ Zw3 ¼ 0, (27)
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where r is density of the beam,

2k ¼
cd

rhd
,

2z ¼
sB2

ml
2rL

R L

0
_rðx;wÞ sinð2lxÞdx� 2l

R L

0 ð
R x

0
_rðx;wÞdxÞsin2lxdx

w;tw
,

o2
0 ¼

EIl4

rhd
; o2

L ¼ o2
0 1�

B2
r

B2
c

�
EAaDT þ _Aa2DT2

Pc

 !
; B2

r ¼
B2

m

2
,

B2
c ¼

EIl3m0mrD
2w2d sinhðlh=2Þ

; Pc ¼ EIl2 ¼ EI
p2

L2
,

x ¼
bl2

rh
; Z ¼

El4

4r
; s ¼

1

W0 þ W0arDT
.

The o0 is the free transverse vibration natural frequency, oL is the transverse vibration of the beam
subjected to transverse magnetic fields and thermal loads. In this study, the new parameter are defined as
O ¼ $=oL, t ¼ $t, k1 ¼ k=oL, k2 ¼ z=oL, 2j ¼ x==o2

L, and k3 ¼ Z==o2
L. The frequency ratio O is also called

the reduced natural frequency [14]. The Eq. (27) is simplified to well-known Mathieu equation.

O2 d2w

dt2
þ 2O½k1 þ k2ð1þ cos 2tÞw2�

dw

dt
þ ð1� 2j cos 2tÞwþ k3w

3 ¼ 0. (28)

3.4. The IHB formulation

The procedure of the IHB method used to solve Eq. (28) is mainly divided into two steps that have been
discussed in Refs. [13–15]. The first step is a Newton–Raphson procedure. The second step is to find an
approximate solution by assuming a periodic solution and applying Galerkin’s method.

The current state of vibration corresponding to a point (O0, j0) on instability boundary is denoted by w0. A
neighboring state is reached through a parameter incrementation:

j ¼ j0 þ Dj; O ¼ O0 þ DO; w ¼ w0 þ Dw. (29)

Substituting Eq. (29) into Eq. (28) and neglecting the nonlinear terms of Dj, DO, Dw, a linearized
incremental equation is obtained:

O2
0D €wþ 2O0½k1 þ k2ð1þ cos 2tÞw2

0�D _wþ ð1� 2j0 cos 2tÞDw

þ 3k3w2
0Dwþ 4O0k2ð1þ cos 2tÞw0DwD _w

¼ Rþ 2Djw0 cos 2t� 2DOO0 €w0 � 2DO½k1 þ k2ð1þ cos 2tÞw2
0� _w0, ð30aÞ

where

R ¼ �fO2
0 €w0 þ 2O0½k1 þ k2ð1þ cos 2tÞw2

0� _w0 þ ð1� 2j0 cos 2tÞw0 þ k3w3
0g. (30b)

The approximate functions w0 and Dw can be expanded into a truncated Fourier series

w0ðtÞ ¼
X2N�1

k¼1;3;...

ðak sin ktþ bk cos ktÞ and DwðtÞ ¼
X2N�1

k¼1;3;...

ðDak sin ktþ Dbk cos ktÞ (31)

for the principal region of instability, corresponding to a solution of period 2p. N is the number of temporal
terms for calculation.

Substituting Eq. (31) into Eq. (30a) and using the Galerkin’s procedure, a set of linear equations can be
obtained as the following:

½C�fDag ¼ fRg þ DjfPg þ DOfQg, (32)
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where [C] is the matrix for the Fourier coefficients and {Da} is a vector consisting of Fourier coefficients Dak or
Dbk, for example: fDagT ¼ fDa1;Da3;Da5; . . .g. {R} is the corrective vector derived from Eq. (30b), and {P},
{Q} are vectors obtained from the second and third right-hand side terms, respectively.

In Eq. (32), a linear system of 2N equations with 2N+2 unknowns Da, Dj and DO has to be solved at each
incremental step. Hence, it is necessary to add two constraints among Da, Dj and DO. For example, the
boundary curve in the (O, j) plane, with ak k as a parameter. The quantity ak k has to be constant through the
incremental steps, determining the first constraint to be: ak k ¼ aþ Dak k. In this study, the Euclidian norm has
been used to solve the problem:

jjajj ¼
X2N�1

k¼1;3;5...

ða2
k þ b2

kÞ

" #1=2
. (33)

These choices and corresponding procedures used to solve Eq. (32) are discussed in Refs. [13–15].

4. Numerical results and discussions

A low-carbon steel is considered in this study, where the physical parameters of this system are given as
E ¼ 1.94� 1011 Pa, r ¼ 7930 kg/m3, L ¼ 0.5m, L/h ¼ 85, d ¼ 10�2m, mr ¼ 3.0� 103Hm�1, a ¼ 11�
10�6 1C�1, m0 ¼ 1.26� 10�6Hm�1, ar ¼ 6.5� 10�3 1C�1, W0 ¼ 9:68� 10�8Om (ohm-meter), _=E ¼ �140.

When cd ¼ 0, DT ¼ 0 and the linear strain are considered, the principal region of dynamic instability of a
simply supported beam-plate in an alternating magnetic field had been derived by Moon and Pao [1] and
written as

d2w

dt2
þ o2

Lð1� 2Z cos 2$tÞw ¼ 0, (40)

where o2
L ¼ o2

0ð1� B2
r=B2

cÞ ¼ o2
0ð1� B̄

2
Þ, 2Z ¼ B2

m=ð2B2
c � B2

mÞ ¼ B̄
2
=ð1� B̄

2
Þ, B̄

2
¼ B2

m=2B2
c ¼ B2

r=B2
c , and o0

2

is defined the same as in Eq. (27). The results of instability in this study for a small deflection ak k ¼ 0.01, and
the results studied in Ref. [1] are shown in Fig. 2. In the present case, two solutions are found to be in good
agreement.
Fig. 2. The theoretical regions of instability of a simply supported beam-plate in a transverse magnetic field.
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Using amplitude incrementation procedure as described in the previous section, the nonlinear effects of
amplitudes on the principal instability region for the damping parameter k1 ¼ 0 and 0.1 in the (O, j)-plane are
shown in Fig. 3. It has been known that when viscous damping is included, then a least load factor j is
required to make a parameter vibration occur and it is varied with the amplitude. As can be seen in Fig. 3,
when viscous damping is included, the boundary curves no longer consist of two different branches, but one
single branch with a U-turn portion. Furthermore, the higher value of the amplitude ak k is considered, the
higher value of the frequency ratio O is obtained. Using the j-incrementation procedure, the nonlinear effects
of amplitude on the principal instability region in the (O, ak k)-plane are shown in Fig. 4. For a fixed load
factor, it appears that a smaller region of the principal instability is obtained by considering the higher value of
amplitude ak k given by Eq. (33). Fig. 5 shows the nonlinear influences of the amplitude on the frequency ratio
for a fixed load factor j ¼ 0:5 and for different damping coefficients. The results show that when the damping
coefficient k1 is greater than 0.05, the branches curves become one close path, and an increase in damping
parameter results in a reduction of the region of instability. One may note that, when damping coefficient is
different from zero, the curves no longer consist of two distinct branches, but of one closed path. Because the
value of frequency ratio O up to 3.0 is considered in this case, the turning point for k1 ¼ 0.05 lies outside of the
highest limit of the horizontal axis used in Fig. 5. If the higher value of frequency ratio O is considered in this
case, the boundary curve for k1 ¼ 0.05 will be one closed path.

To analyse the effects of varying the conditions of temperature increases, one considers ak k ¼ 0.5, then
k1 ¼ 0 and 0.1 are considered, respectively. The effects of increased temperature DT on the principal instability
region are shown in Fig. 6, in which the regions of instability are shifted up with an increase in temperature,
while ðB2

r=B2
cÞ þ ðEAaDT=PcrÞo1. In the current work, the temperature increase DT in the instability analysis

is related to the fundamental natural frequency of the system and the conductivity of the material through the
relations o2

L ¼ o2
o � ð1� EAaDT=PcÞ and s ¼ 1=ðW0 þ W0arDTÞ, respectively. In particular, the damping

coefficient k2 no longer is considered as the original value when the temperature increase is different from zero.
Moreover, though the value of increased temperature is quite small in this study, the instability region changes
obviously. Fig. 7 shows the nonlinear influences of amplitude on the frequency ratio for a fixed load factor
j ¼ 0:5 with the different temperature increases. The results clearly show that the relative value of frequency
ratio O becomes higher and the region of instability becomes smaller when the temperature increases, i.e. the
increasing temperature increases the effect of nonlinear on the system.
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5. Conclusions

Based on the magneto-solids mechanics and the large deformation, the theoretical model has been obtained
for a pinned beam subjected to an alternating magnetic field and thermal load. Through the principal of
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minimum of potential energy and the Galerkin’s method, the nonlinear governing equation is derived. In this
case, the model is symmetric with respect to the mid-surface of the beam and the magnetic field is spatially
uniform, the body force F and body couple c on the beam can be simplified and led to a nonlinear damping
effect. By using the IHB method, the principal instability regions have been shown in the parameter space of
the excitation parameterj versus frequency ratio O, the frequency ratio O versus dimensionless amplitude ak k,
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and the effect of thermal loads on the region of instability. The results show that the region of instability is
sensitivity dependent upon the amplitude ak k, the excitation j, the increased temperature DT and the damping
parameter k1. Considered as a small deflection of a beam-plate in an oscillating magnetic filed only, the results
of instability carried out by the IHB method agreed well with the results of Moon and Pao [2].

In should be noted that each buckling mode has its own safe temperature increase and magnetic field
increase. Under the value of buckling, increasing either the transverse magnetic field or the thermal load leads
to a decreasing fundamental natural frequency. Though the value of temperature increase is small for slender
sections in this study, the effect of thermal load on the instability region is obvious. Moreover, either the
higher temperature increase or the higher value of amplitude ak k is considered, the higher value of frequency
ratio O is obtained. It is believed that the increasing temperature increases the effect of nonlinear on
the system. This is for an increase in the temperature, the fundamental natural frequency and conductivity
of the material will always coincide with the relations of o2

L ¼ o2
0 � ½1� ðEAaDT þ _Aa2DT2Þ=Pc� and

s ¼ 1=ðW0 þ W0arDTÞ.
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